Group Presentation of the Schur-Multiplier Derived from a Loop Group
نویسندگان
چکیده
منابع مشابه
On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملTHE DERIVED GROUP OF A SEIFERT FIBRE GROUP
Every Seifert Fibre Group is the lift of a Fuchsian group to the universal covering group of PSL (2,R). From this, we work out a form of presentation for such a group. With the calculation of the Euler number, we can establish the presentation of the derived group of a Seifert Fibre Group
متن کاملon a conjecture of a bound for the exponent of the schur multiplier of a finite $p$-group
let $g$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(g)$ and let $m=lfloorlog_pk floor$. we show that $exp(m^{(c)}(g))$ divides $exp(g)p^{m(k-1)}$, for all $cgeq1$, where $m^{(c)}(g)$ denotes the c-nilpotent multiplier of $g$. this implies that $exp( m(g))$ divides $exp(g)$, for all finite $p$-groups of class at most $p-1$. moreover, we show that our result is an improvement...
متن کاملthe derived group of a seifert fibre group
every seifert fibre group is the lift of a fuchsian group to the universal covering group of psl (2,r). from this, we work out a form of presentation for such a group. with the calculation of the euler number, we can establish the presentation of the derived group of a seifert fibre group
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 2007
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496165154